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Abstract - The inverse problem of reconstructing, from boundary measurements, the position, the shape
and the number of small inclusions in the interior of a domain, has received much attention over the last
years (see the monograph by the two last authors for a comprehensive review). An important restriction
for the solvability of the inverse problem was the assumption that the inclusions had to be sufficiently
far from the boundary. This assumption was lifted in a recent work. The problem can be resumed as
follows: we consider a homogeneous conducting object occupying a bounded domain in two or three
dimensions, with a smooth connected boundary. The background potential is the solution to Laplace’s
equation with a Neumann boundary condition. A small inclusion, with positive conductivity different
from the background, resides in the object and is nearly touching its boundary. We derive an explicit
formula for the leading order boundary perturbations resulting from the small inclusion using layer po-
tential techniques and polarization tensors. Careful numerical computations have enabled us to verify the
validity of the asymptotic expansions. This means that a low cost imaging apparatus can be conceived
on the basis of the mathematical analysis. That is, thanks to the analysis, the apparatus possesses very
precise information regarding the actual localization and shape of the inclusions. Furthermore, there is
no restriction concerning the proximity of the inclusions (for example, breast cancer tumours in a very
early stage) to the boundary (the skin’s surface).

1. INTRODUCTION

Consider a homogeneous conducting object occupying a bounded domain Q@ C R?, with a connected
C?-boundary 9. We will assume, for the sake of simplicity, that its conductivity is equal to 1. The
background voltage potential, U, is the unique solution in H'(£2) to the boundary value problem

AU =0 inQ,

au /
- =49, U=0.
dv ’BQ Joa

Here v denotes the unit outward normal to the domain € and g represents the applied boundary current;
it belongs to the set L3(8) = {f € L*(8), [,, f = 0}.

Consider a small inhomogeneity D inside € of conductivity equal to some positive constant k& # 1
that is nearly touching the boundary J). We assume that

(1)

D =¢eB+ z,

where z € € is such that
dist(z, 9Q) = Me.

Here B is a bounded domain in R? containing the origin with a connected C%-boundary and the constant
M > maxy,ecap |z
The voltage potential in the presence of the conductivity inhomogeneity D is denoted w. It is the
H'-solution to
V. (1 F(k— 1)_Xp)vu ~0 inQ,

Ju g / "0 (2)
= q, u = U,
90 20
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where xp is the indicator function of D.

Our objective in this paper is to present an explicit formula for the leading order boundary perturba-
tions resulting from the presence of the small conductivity inhomogeneity D. For the detailed derivation,
the reader is referred to [4]. Our new asymptotic formula extends those already derived for a small
inhomogeneity far away from the boundary [1] to the case of one nearly touching the boundary. If the
conductivity inclusion is not too close to the boundary it can be modeled by a dipole. This approximation
is valid when the field within the inclusion is nearly constant. On decreasing the inclusion-boundary sep-
aration, the assumption that the field within the inclusion is nearly constant begins to fail because higher
order multi-poles become significant due to the inclusion-boundary interaction. Our new approximation
which is valid when the inclusion is at a distance comparable to its diameter apart from the boundary
provides some essential insight for understanding the inclusion-boundary interaction.

Asymptotic formulae for the boundary perturbations due to the presence of conductivity inhomogen-
eities are of significant interest from an imaging point of view. For instance: if one has a very detailed
knowledge of the boundary signatures of conductivity inhomogeneities, then it becomes possible to design
very effective algorithms to identify their location and certain properties of their shapes. We refer the
reader to |2, 5, 6] for examples of numerical methods based on such specific formulae. Since our formula
carries information on the location, the conductivity and the volume of the inclusion, it can be efficiently
exploited for imaging inclusions close to the boundary.

Although we deal with the problem only in two-dimensional space, all results in this paper are valid
for general dimension d > 3 with minor modifications.

2. ASYMPTOTIC EXPANSIONS
We first give a representation formula that serves to express the solution « to the conductivity problem
(2) through its harmonic part H defined by

H(z) = Dolul|aq)(x) — Sag(z) for z € R?\ a9 (3)

where & and D are the single and double layer potentials for the Laplacian operator. The following
representation formula holds:

OH
w(w) = H(z) + Sp(\ — ;cg)—l(;—yb,g) for z € Q, (4)
where A = 5-(7{1}1—)

Based on known results for layer potentials and a representation formula for the conductivity in terms
of these potentials (see [4, 1] for details), we can show that for z € 9O

(u—U)a) + /;D N(e,y)AI = Kp) ™ (v VDo (u — U))(y) doy,

- /9 M@ )\ = Kp) - VU) ) dy, (5)

where the singular integral operator, Kp, is defined as

1 " Ay, y — )

Kode) — gopv. [ LD 4000,

2m op |z =1yl
and K} is the L%-adjoint of Kp. If O is a two dimensional disk with radius B, then for =,y € 90,

<Vﬂ:> T — 7j> . 1

lz—y> 2R’
and hence

1
Ko é(z) = Kod(z) = TE Joo #(y) doy. (6)

The formula (5) is a representation formula for the perturbations w — U on d). The Neumann function
N(z,y) for A in Q corresponding to a Dirac mass at z is defined as the solution to

AxN(z,z) = =6, inQ,

ON 1

v o = ESIK (7)

/ N(z,y)do, =0 fory e
a0
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The following formula relates the fundamental solution I" to the Neumann function.

(——%I-F Ko} (N, 9)(z) =T(z —y) modulo constants, =€ I,y e Q. (8)
Observe that if Q is the two-dimensional disk, then N(z,y) = —2I'(z — y) modulo constants, for = €
N,y e
We also have that
* \—1 9H re)
w(x) =U(z) — N(z,y)(\ —K}) ($-|()D)(y) doy, foraz e (9)
aD

This representation formula provides us with an ideal tool for the rigorous derivation of the leading order

boundary perturbations resulting from the presence of the conductivity inhomogeneity D.
For v € L*>°(0%Q), let

To(z) = /8[) Nz, g)\ = K) " v - VDau) () doy, = € 9. (10)

Since (Al — K%)~1(v - VDgqu) has the mean value zero, we get

To(e) = [ HEUMZTED G ) e VDo) o (1)

€
We view (5) as an integral equation
(I+T)Y(uw-U)=F ondf (12)

where the definition of I is obvious. We can show that if 9Q of class C2 then I + T is invertible on
C%(99)). We thus have that

w(z) — Uz) = (T +T)" F)(z), =ea. (13)

To derive an asymptotic expansion of v — U on 92 we now investigate the asymptotic behavior of the
operator 1" as ¢ — 0.

- W(z) — v, /9 ) Nz y) - N 2) (01 2 k) L ww) () doy, @ € 0. (1)
ThmlaI@nnnashowsthatﬁmi}é(ﬂ%@Q)
Tf(x) = -W(z)f(20) + T1 f (), (15)
where
1ife) = [ HED IO G ) (VDas +waolin) 1)) doy

We can then show that

71 fll ooy < Ce TP eVDqf +wf(20)vs ey < Clsp(vVE) + VO Fllnm(any, (16)

where 1/p+1/¢=1, p,qg > 1 and
sp(e) = sup |f(z) = f(20)].

|z—20|<e

Moreover one can show in a similar way that if = is far away from zo, then

IT1f(x)] < Ce(sp(Ve) + Vel FllLee(any- (17)

Let
My f = W(z)f(20), feC%aQ).

Then we get
I+T=1I-Mw+Ti. (18)
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It is easy to see that I — My is invertible provided that W(zo) # 1. In fact, (I — My )~ is given by

(1= M) (1)(0) = () + e ). (19
In view of (13), we get
w—U=(I—Mw) Y F) =T +T) (I — Mw) Y(F) on Q. (20)

We now investigate the asymptotic behavior of I as e — 0. We suppose from now on that g € C L(66)
and ) is of class C? so that U € C?(€1). We first observe that

1 F Nl o (a0y < CellVU [ L (apy-

This can be proved in a similar way as before.
Since U € C?(Q),
VU|5)D = VU(Z()) + 0(6),

which gives after changes of variables

Flz) = _GVU(ZO)-( N(z, 2+ ey)(M — K£5)1(») day) +O(e2), (21)

aB
if @ is close to zo. Moreover, if z is far away from z or |z — zo| 3> O(e), then
Nz, + )M = K5) 7 w) doy = [ [N(oy2 -+ eg) = N, AT = K)™(0) oy
oB aB
= ¢VN(z, 2)P + O(?)
= eV N(z, )P + O(e?),

where P = [, y(A — K%) '(v) doy is the polarization tensor. Thus in this case we obtain
F(z) = —e*VU(2)'PVN(z, ) + O(e®) if |& — 20| > O(e). (22)

The reader is referred to [3, 6] for extensive studies on polarization tensors.
We claim that

sp(vVe) = sup |F(z) - F(z)| = O(Ve).

lz—z0|<\/€

In fact, since 9§ is C?, |V, N(z,y)| < Clz —y|~! for z € 9Q and y € Q. Therefore,

|F'(z) = F(20)] < /aD IN(20,9) = Nz, )||(A — Kp) ™ (v - VU)(y)| doy,

. 1/p
< </5)D []\7(507 TJ) - A,-'T(:U,y)v’do‘y) "(,\I - ICE)*‘l(l/ X Vb’)”[,q(g)[))

< Ce TPV Lagap)
S C”VU“Loo(g)D)I’U - Zo|,

We then obtain from (16) and (17) that

_ O(e3?) if |z — 20| = O(e) ;
(I - Mw) 'F(z) = ’ 23
1 ( w)  F(x) {O(EJ,Z) if |3 — 20 > O(e). (23)
In a similar way one can see that
O(1) if jz — 2] = O(e),
W(z) = 24
(=) {O(e) if [z — 20| > O(e). (24)

We finally obtain the following theorem from (13), (19), (21), (22), (23), and (24).
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Theorem 1 Suppose that g € CH(IQ) and ) is of class C2. We also assume that W(zo) # 1, where W
is the function introduced in (14). Then the following asymptotic exzpansion holds uniformly on 9):

(4= V)@) = =eVU o) ([ Nio 2+ )M = Kp) ) doy

 W(=) ‘ ‘ ‘e 32
—QWVU(/JO)(/E)B N(zo,z—l—ey)(/\f _}CB) 1(1/) d()'y) +O((—.3/2).

Moreover, if |x — zo| > O(e) then
(u —U)(x) = —e*VU (20)' PV N(z, z)

W) . s/
WVU(ZO)(/E’B N(z0, 2+ ey)(M —K5)"H(v) de) + O(e”7),

— €

where P = [, y(A] — K§) ' (v) doy is the polarization tensor and N is the Neumann function defined
in (7).

Since [, N(z, 2 + ey)(A] — K) ' (v)do, = O(1) for = near zy, Theorem 1 and (24) show that
(v — U)(z) = O(e) near z, while (v — U)(z) = O(e?) for = far away from 2. Thus « — [/ has a relative
peak near zg.

Some words are in order for the condition W{zy) £ 1. Since

[W(20)] < Cllwll Lo (o),

where the constant C is independent of M, the condition is fulfilled if M is large enough.

3. NUMERICAL EXAMPLE OF A UNIT DISK CONTAINING A SINGLE DISK-SHAPED
IMPERFECTION
In this section, we consider a unit disk in R? with background conductivity 1 containing a single disk-
shaped imperfection of small radius € and conductivity k. The imperfection is centered at z = (1 — Me, 0)
on the axis y = 0 at a distance (M — 1)e from the boundary where the constant M > 1. Let zo = (1,0).
Our aim is to examine the perturbation due to the presence of the imperfection on the Dirichlet
boundary measurements as ¢ tends to zero. We thus examine the viability of our results in Theorem 1
by numerical examples.
Since

/ vy doy = 0 and / N(z,y)do, =0, for y € Q,
aD aQ

then using property (6) we have

o\ —1 1
(M= KB) " ()W) = ~1y, Y y € 39,

a

and
N(z,y) = —2I'(z — y) modulo constants,V = € 9§,y € .

From Theorem 1 it then follows that

)
€ T
(u—U)z) =~ —m\VD(zo)-(/aB log [z — z — ey|v, day)
W (x) o
—_— EE Zo — 7z — €yl , & € 0.
m\(l—VV(zo))VU( 0) (/aBlog[ 0— % ey]z/yday), x € I0
(ii)
-U)e) = ~2TU(). 2
u z) =~ S %0 pEpmpp

eW(zx)
- U(z0)- AV = Y|Vy GOy |,
YA ([B log | M, =yl dor

&

if |z — 20| 3> O(e).
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(a) () (c)

Figure 1. Perturbation of boundary conductivity, (u — U)|,q , for £ =2 and e varying with (a) M = 1.5,
(b) M = 2 and (c¢) M = 3. Line styles: solid ¢ = 0.2; dashed ¢ = 0.15; dotted ¢ = 0.1 and dot-dash
€ = 0.05.

(iif)
€

(u — U)(Zo) ~ —mVU(l’o)-(/&’B lOgIIM?/ZO —yll/y dO'y),

We now present numerical simulations using these asymptotic expansions. In these experiments, we ex-
amine numerically the transmission problem (2) in cylindrical coordinates (7, @) with Neumann boundary
data ¢(1,0) = cos@ + sinf. The analytical solution of the homogeneous problem (1) is then given by
Ulr,8) = r(cos @ + sin #). Therefore, (u — U)(zp) can be approximated as follows:

. 27
(v —U)(z0) =~ T 61()Z(u1 ]Q’V("O)) / log ((M — c0s 0)? + sin® 9) (cos @ +sin ) db, (25)
—W(s 0

where

1—k 2 (M — cos8)? +sin® 0 cos
W (z0) = m/ log M2 M —cosf "
0

The first set of computations (see Figure 1) shows the dependence of the perturbation of the boundary
conductivity (u — U)|, as a function of the distance variable M for different values of € and for a fixed
imperfection conductivity of k = 2. The next three figures (Figure 2) show the results for a larger value of
the conductivity, k£ = 10. We observe that the minimal value (near 6 = 0) is constant and this is clearer
as the distance M decreases. We can conclude that the perturbation amplitude is asymptotically first
order in €.

We can also plot these same results for & = 10 fixed as a function of M with ¢ = 0.1 - see Figure 3
(a). We clearly observe the dependence of the amplitude and sharpness of the peak as a function of the
distance.

The results of the above computations are resumed in Table 1 and Table 2 where the maximal value
of |u — U] on the boundary 9 is given as a function of the three parameters k, M and ¢. To check the
influence of the angular position of the perturbation, a computation with » = (0.5, 0.5) was performed.
In Figure 4 we observe that the perturbation is indeed centered at 8 = 7 /4. We conclude that the angular
position of the imperfection corresponds to the position of the perturbation peak.

Next, we compare in Table 3 the values of (v — U)(29) computed from the asymptotic formula (25)
with those computed by a direct simulation as in Tables 1 and 2.

Finally, we consider a homogeneous disk with a perfectly conducting circular imperfection. The
boundary condition on the perimeter of the imperfection is homogeneous Dirichlet, « = 0. The results as
a function of M are shown in Figure 3 (b). As in the cases above,

o the peak of the perturbation corresponds to the angular position of the imperfection;

¢ as the imperfection approaches the boundary, the peak amplitude tends to a finite limit,



(a)

Figure 2: Perturbation of boundary conductivity, (v — U)|,q , for & = 10 and € varying with (a) M = 1.5,
(b) M = 2 and (¢) M = 3. Line styles: solid ¢ = 0.2; dashed ¢ = 0.15; dotted ¢ = 0.1 and dot-dash

e = 0.05.
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Figure 3: Perturbation of boundary conductivity, (u
(a) k =10, (b) k = 4o0. Line styles: solid M — 1 = 5; dashed M — 1 = 2.5; dotted M — 1 = 1.25 and

= U)lyq, for e = 0.1 and varying distance M with

dot-dash M — 1= 1.01.

M=15 M =20 M =3.0
e=10.20 | 0.119(0.60) | 0.097(0.49) | 0.075(0.38)
e=0.15 | 0.086(0.57) | 0.069(0.46) | 0.051(0.34)
e=10.10 | 0.055(0.55) | 0.044 (0.44) | 0.031(0.31)
e =10.05 | 0.027(0.54) | 0.021(0.42) | 0.014(0.28)

Table 1: maxaq |u — U] and maxaq |[u —

Ul /e (in bold) for k = 2.

M=15 M =20 M =30
¢ =020 | 0.270 (1.85) | 0.227(1.14) | 0.180(0.90)
¢=0.15 | 0.196(1.30) | 0.162(1.07) | 0.123(0.82)
¢ =010 | 0.126 (1.26) | 0.103(1.03) | 0.075(0.75)
¢ =0.05 | 0.061(1.22) | 0.049(1.00) | 0.035(0.69)

Table 2: maxaq [« — U| and maxgg |vw — U| /e (in bold) for & = 10.
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M =30 M =40 M=50
c=005 | 0.0118(0.236) | 0.0003 (0.185) | 0.0076 (0.152)
0.0116(0.232) | 0.0085(0.171) | 0.0068(0.135)
¢ =002 | 0.0046 (0.228) | 0.0035(0.173) | 0.0028 (0.140)
0.0046 (0.232) | 0.0034 (0.171) | 0.0027 (0.135)
¢ =001 | 0.0023(0.230) | 0.0017 (0.170) | 0.0014 (0.135)
0.0023 (0 232) | 0.0017(0.171) | 0.0014 (0.135)

Table 3: Comparison of (v —U)(zg) computed numerically (upper lines) and (v — U)(29) computed from

the asymptotic formula (25) (lower lines) for k = 2. Bold values are (u — U)(z0)/e.

0.01—

-0.01f -

=0.02f~

-0.03F -

u-U

~0.04F
-0.05| -
-0.06
007}

—-0.08f

~0.09 L1

Figure 4: Perturbation of boundary conductivity, (u —

U)lsq , for z = (0.5, 0.5).
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4. CONCLUSIONS

We have presented an asymptotic expansion that allows the accurate reconstruction of the position and
shape of small imperfections that are close to the surface. The numerical experiments reveal that these
asymptotic results are indeed attainable and could thus be implemented in new imaging protocols, espe-
cially for the early detection of breast cancer.
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